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1 Why Probability

As we’ve discussed earlier, our goal this semester will be to explore how we can
build good models of language. we’ve also seen that language involves quite a
bit of uncertainty.

To see this, let’s consider a very important task in NLP: language model-
ing. A first approximation of the task description for language modeling would
be next-word prediction — Given a sequence of words, predict what word comes
next. For example, a language model may be given the sequence of words “An
apple a day keeps the ” and the model would have to produce the next word
(something like doctor, say).

The problem with our first-pass analysis should be somewhat apparent though
— there isn’t one right answer! “An apple a day keeps blood...” forms a valid
prefix of a sentence (i.e., “An apple a day keeps the blood flowing”). Of course,
there’s a number of other continuations (e.g., ”An apple a day keeps the proc-
tor away”). But some continuations are better than others: “An apple a day
keeps the is” doesn’t seem to form any grammatical continuations. And neither
“doctor” or “blood” is incorrect, but “doctor” seems better, in some way.

To solve this, we need a way to model this uncertainty, and probability is
going to be the tool we need!

In the end, we’re going to arrive at a definition of language modeling that
has a language model provide a probability distribution over all possible next
words.

2 The Basics

Here’s the framework: We are going to want to model the probability of an
outcome s happening. The set of all possible outcomes is something we’ll call
the sample space, Ω. A probability distribution p(·) is a function p : Ω → R
that assigns each outcome s a probability, such that:

∀s ∈ Ω, 0 ≤ p(s) ≤ 1 (1)∑
s∈Ω

p(s) = 1 (2)
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That is, probabilities lie between 0 and 1 (inclusive!) and if we add up the
probabilities for each event in the sample space, we get 1.

Consider a 6-sided die. When we roll a die, we’re uncertain what the outcome
will be, so we can model the die with a probability distribution! We have 6
possible events — one corresponding to each side of the die, so we can define
our sample space as Ω = {1, 2, 3, 4, 5, 6} with each outcome representing the
number on each side of the die. Now, if we’re modeling a fair die (i.e., each face
has equal probability of begin rolled), we can derive the appropriate probability
distribution p! Let the probability of each face showing up be k. To practice
the mathematical notation, we can write this as...

∀s ∈ Ω, p(s) = k

but by the 2nd part of the definition of a probability distribution, we know
that ∑

s∈Ω

p(s) = 1∑
s∈Ω

k = 1

|Ω|k = 1

k =
1

|Ω|
=

1

6

And this generalizes quite neatly! If we have a finite sample space and
we know that each event is equally likely (i.e., the probability distribution is
uniform, ∀s ∈ Ω, p(s) = 1

|Ω| ).

We also might want to talk about the probability of events, which we formally
define as subsets E ⊆ Ω. As you might expect, we define the probability of an
event E as

p(E) =
∑
s∈E

p(s).

For example, we might want to construct the probability that the die rolls
an even number, so we construct E = {2, 4, 6} ⊂ Ω, and then we know that
p(E) =

∑
s∈E p(s) = 3k = 1

2 !
To be fully formal about this, I should introduce the term random variable.

When we write p(s), this is equivalent to the more technically correct notation
p(X = s), where X is a random variable that models our die. The notation
is more correct in that it specifies that we are measuring the probability with
which the random variable X takes on the value s. These subtle distinctions
are important only to avoid getting tricked by notation: I’ve told you p(s) is
a function from Ω → [0, 1], but when we consider multiple random variables
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at once, p is going to look like it’s a bunch of different functions! In actual-
ity, probability distributions correspond to random variables and p(s) is just a
convenient shorthand for p(X = s) when we can infer what random variable X
is.

Also worth noting that what we’re discussing here are discrete random vari-
ables. Things get trickier with continuous random variables, but discrete ran-
dom variables will be enough to get us through the semester!

3 But what is a probability, actually?

So far, we’ve mentioned a few rules about what a probability distribution can be
(i.e., it abides by those two rules stated above). But what should the distribution
be?

This may seem obvious for a case like a single die, but it’s worth digging into
the philosophy while things are simple. One way of thinking about this is what’s
often called a frequentist view. Let’s return to our 6-sided die example, with
the appropriate X, p, and Ω. Let’s think of each s ∈ Ω as a possible outcome of
a trial (i.e., a roll of the die). If we think of p(s) as the likelihood of s being the
outcome, then (informally) if we run infinite number of trials (i.e., roll infinite
dice), the correct choice of p(e) is the proportion of trials that have s as the
outcome. Of course, we can’t run an infinite amount of trials or even compute
that proportion, but we can get at that idea by invoking limits: As the number
of experiments we run, n, approaches infinity, p(s) should be the ratio between
the number of times the outcome is s (what we’ll call c(s)) and n. That is, writ
formally,

p(e) = lim
n→∞

c(e)

n
. (3)

This formulation may seem quite natural (it is!), but your intuitions may
break down a bit if you consider other things we might want to assign proba-
bilities to.

Consider a presidential election — how do we appropriately assign a proba-
bility to a candidate winning? By definition, we can only observe the election a
single time, and thus the only “correct” distribution would be one that assigns
the eventual winner probability 1 and the other candidates probability 0. This
isn’t perfect either, since we have to drop the limit as part of our frequentist
definition, since it doesn’t make sense to take the limit as n → ∞ if there can
only ever be 1 event.

Instead, one can adopt a Bayesian view of probability, where probabilities
represent the credence, or degree of belief assigned to an event happening (as-
sumed to be assigned by a “reasonable” person). If you’re economically minded,
this is sometimes formulated as p(s) is the price at which (a rational/reasonable)
you would bet on s occurring if the payout is 1 unit of currency. A natural
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conclusion of this view is that probabilities under this view are inherently sub-
jective — there is no way of measuring the right probability like a frequentist
view would imply!

Of course, that doesn’t mean that Bayesian models are entirely untethered
from real data. For example, a model that assigns probabilities to multiple
elections based on the same underlying principles can be evaluated on their
calibration: Do events that you assign probability p happen with proportion
p? That is, do candidates you give, say, a 1 in 3 chance win 1 out of 3 times?
There is a subtle trick here worth pointing out: This allows us to evaluate the
reasonableness of the model as a whole (say, p(winning | candidate)) but not
the legitimacy of the probability assigned to a particular candidates odds: That
kind of evaluation can only live in the realm of repeated trials!

For the most part, these views of probability are interchangeable — in prac-
tice, these views will converge on similar numbers for all the cases we’ll care
about. However, keeping these views on probability in mind will help us think
through what the probabilities we assign actually mean, which will in turn help
us understand how to assign probabilities to things when we build probabilistic
models.

4 More Probability Ideas

Here, we’ll quickly jump through some slightly more sophisticated probability
ideas that we’ll need for the course. Things will be brief, but don’t worry —
practice will come!

4.1 Joint Probabilities and Independence

Suppose we have 2 events, A,B ⊆ Ω. What is the probability that both events
happen? We can formalize this using the notion of a joint probability, which
we will notate as p(A ∩ B). As the notation indicates, we can think of this as
being related to intersection of the sets A and B! Since A ∩ B ⊆ Ω, A ∩ B
represent a joint event, and it’s probability can be treated just like any other!

p(A ∩B) =
∑

s∈A∩B

p(s)

Things get a little more tricky when we think of two different, but potentially
related random variables. Suppose we have Random Variables X and Y with
sample spaces ΩX and ΩY , and we want to find the probability that X ∈ EX

and Y = EY . Since they have different sample spaces, we can’t just take the
intersection EX∩EY ! Instead, we’ll have to construct a new sample space that’s
the Cartesian product of ΩX and ΩY , ΩX × ΩY . As a reminder from Discrete
Math, this is just the set of pairs of {(x, y) | x ∈ ΩX , y ∈ Ωy}. The first
component of the pair represents the outcome of X, while the second represents
the outcome of Y .
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If that’s the case, then what should the joint event space be? Well, the space
where the X-component is in EX and the y-component is in EY (i.e., events in
the joint space where both EX and EY occurred!).

These two formulations are actually equivalent once we note that we can
redefine EX and EY in terms of the joint sample space (you can convince yourself
by working this out by hand1).

Now joint probabilities are fairly common things to want to model: Suppose
we flip 2 coins, and want to model the odds of two heads. Each coin will be
modeled with a random variable Ci has sample space Ωi = {H,T}. To get
p(C1 = H,C2 = H), we need to first construct the joint sample space for the
joint random variable C, Ω = Ω1 × Ω2 = {HH,HT, TH, TT}, and our joint
event is E = {HH}.

One thing we haven’t talked about is the relationship between the prob-
ability distributions for individual random variables as opposed to their joint
distribution. Why? Because it’s tricky! In general, we can’t describe the prob-
ability of a joint event based on the marginal distributions of the individual
component random variables!

Now, we intuitively know that there is, in fact, a relationship in the case of
two coins being flipped. The probability of a coin landing on heads in 1

2 , and
the probability of two heads being flipped with 2 coins is 1

4 = 1
2 · 1

2 — that is,
p(C1 = H,C2 = H) = p(C1 = H) · p(C2 = H)!

It turns out this is only true when the two random variables are indepen-
dent — that means that outcome of one event doesn’t affect the likelihood of
the outcome of the other. Colloquially, one might just say that outcomes of the
two events are unrelated.

To wrap that concept up formally, we say that two random variables X,Y
are independent if and only if

p(x, y) = p(x)p(y)

4.2 Computing Marginals

Suppose we’re given a joint distribution P (X = x, Y = y) and we want to derive
the marginal distribution P (X = x)?

Conceptually, if we assume we have the joint sample space we constructed
above, our goal is just to ignore the second component in the pair! If we don’t
care what the second component is, we can just sum over all possible values of
that second component:

p(X = x) =
∑
y∈ΩY

p(X = x, Y = y)

This process is called Marginalization.
Why all this margin talk? Imagine a table with outcomes of X and Y along

either axis and probabilities in each cell. If we sum across each row and each
column and notate those sums in the margins, we find the marginal distribu-
tions!
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4.3 Conditional Probabilities

So if two random variables are not independent, then we can’t write out their
joint probability in terms of their marginal probabilities (i.e., you can’t write out
p(x, y) in terms of P (X) and P (Y ). This is because the outcomes of X depends
on the outcome of Y and vice versa. Of course, the relationship between the
outcomes of X and Y is interesting, so we’ll develop some more theory to deal
with this!

We define the conditional probability P (X = x | Y = y) (or, in short,
p(x | y)) is defined as the probability that the random variable X takes on the
value x if we know that Y = y. Now we can define joint probabilities in terms
both a marginal and conditional probability!

p(X = x, Y = y) = p(X = x | Y = y)p(Y = y)

= p(Y = y | X = x)p(X = x).

Of course, we can also do this backwards if we want to derive conditional
probabilities:

p(X = x | Y = y) =
p(X = x, Y = y)

p(Y = y)
.

And we can decompose the joint probability the other way to derive an
identity called Bayes Rule, which has been extraordinarily influential in a
number of ways, some of which we’ll see later on in this class!

p(X = x | Y = y) =
p(Y = y | X = x)p(X = x)

p(Y = y)
.

And, if we assume X,Y are independent (and assuming p(Y = y) > 0) we
can see that...

p(x, y) = p(x)p(y) = p(x | y)p(y)
p(x) = p(x | y).

That is, as we might assume intuitively, if X,Y are independent, the condi-
tional probability of X given Y is just the marginal probability of X (i.e., the
outcome of Y doesn’t affect the probability of X!). Independence, as we might
intuit!

5 Back to NLP

Okay, let’s bring this back to NLP.
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Suppose we’re designing the language modeling task. We know we can’t
expect the model to predict the next word, but what we can have the model do
is produce a probability distribution over the next word. Formally, we want to
construct a probability distribution over a random variable W which represents
the next word in the sentence. Our sample space Ω should consist of every
possible word — our vocabulary. We could say we want to estimate p(W ),
but that will likely depend on what words came prior, and since those are given
to us in the language modeling task, we will want to define language modeling
as estimating the conditional probability distribution p(W = w | C = c), where
C is a random variable representing the prior context!1

1Historically, the task of language modeling was actually defined in terms of the joint prob-
ability distribution rather than the conditional one. That is, we were tasked with estimating
a probability distribution over all word sequences. However, in practice, these formulations
of the task are equivalent!
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